
SIMPLIFIED DEVELOPMENT FOR MULTIPLE ROBOTIC 
PROJETS USING JAUS

Simon Bolduc* and François Campeau†

 Every unmanned system needs to be remotely monitored and controlled to 
efficiently operate.  Developing a system specific solution that will answer all 
needs and be flexible enough to accommodate modification to a component on 
the unmanned system requires a lot of time and efforts. This problem can be 
solved by using a joint architecture satisfying any unmanned systems. The 
SONIA Autonomous Underwater Vehicle (AUV) team from École de 
technologie supérieure (ÉTS) in Montréal, Canada has developed a framework 
solution using the Joint Architecture for Unmanned Systems (JAUS) SAE 
standards. This paper presents the framework composed of a communication 
library and a telemetry visualization system. It also explains how it was 
successfully integrated into two distinct unmanned systems developed here at 
ÉTS, with a detailed explanation of the integration in SONIA AUV project. The 
library describes the architecture and communication between systems and 
telemetry visualization system. The telemetry enables users to monitor and 
control any type of unmanned system using the JAUS standards.

INTRODUCTION

 Even if the goal of an autonomous vehicle is to accomplish tasks without  any input from an 
operator, telemetry is often required to be able to easily monitor the behavior of the robot. This 
monitoring of the vehicle greatly facilitates the debugging and optimization of the platform. 
Moreover, the telemetry visualization system frequently allows to more easily control and operate 
the vehicle. Consequently, this is a common need for multiple robotic projects that is normally 
specific for each project.

 For the SONIA AUV project, from École de technologie supérieure, many telemetry 
visualization systems have been built and this tool is now crucial for the operators of the 
autonomous submarine. They can adapt the mission to the obstacle course, visualize the sensors 
and mission log, set waypoints and control the actuators. The original communication protocol 
was created by the team so the reusability of the software was very poor. Also, the last  version 
was directly coupled with the control system. When the control system was changed, everything 
needed to be rewritten on the telemetry visualization system side. Therefore, the team decided to 
use a standard communication protocol and completely decouple the communication from the 
control system.

 At École de technologie supérieure, three autonomous vehicle projects exist, a ground vehicle, 
a quadrotor and a submarine. All those teams have common needs and one of them is a telemetry 
visualization system to operate their vehicle. The teams decided to collaborate and create OctETS 
(Open Collaboration Tools École de Technologie Supérieure), an environment where it  is easy to 
share code and ideas. This environment is based on an open-source model and it  includes code 

* Software team leader, SONIA AUV, 1100 Notre-Dame West, Montreal, Quebec, Canada

† Mission manager, SONIA AUV, 1100 Notre-Dame West, Montreal, Quebec, Canada



repositories, a bug tracker and a build server. A major component of this collaboration 
environment  was the creation of a common communication library and a common telemetry   
visualization system which can be used by every team to operate their vehicle. 

 Even though each team is controlling different  kinds of robots, it  was decided that the 
adoption of a generic library and telemetry visualization system would help in the development of 
the multiple projects. Sharing the development  effort and the debugging of the applications 
helped us create a stronger platform. It  also encouraged the creation of reusable software. It  could 
be used for multiple years with minimum development efforts to add new functionality. The 
generic nature of the project  also meant that  it needed to be extensible to support  the specific 
needs of each type of robot without sacrificing flexibility.

 It  was decided that Joint  Architecture for Unmanned System (JAUS), would be the foundation 
for the common communication framework. A generic library was developed containing all the 
required support  for JAUS. Moreover, JAUS has been chosen to permit the interoperability 
between the unmanned systems. JAUS also has been a requirement of various competition the 
teams have participated in.

 This paper presents an overview of the JAUS integration and the JAUS Telemetry. Towards 
the end is demonstrated and explained SONIA’s specific integration.

RELATED WORK

 Multiple open-source and proprietary implementations of the JAUS standards already exist. 
Among others, there is OpenJAUS, and JAUS++. Both of them are coded in C++. It  was decided 
that the teams would create a new JAUS implementation in Java because it is a well known 
programming language at ETS and all the teams’ control systems are written in this language. It 
would have been possible to use a Java Native Interface (JNI) to integrate one of these existing   
non Java libraries to the different  systems. This idea did not please the teams for maintainability 
reasons. There is also the JAUS Tool Set  that can be used to design services and then generate the 
source code. The code generated did not follow any of the style standards the teams had in place. 
So the teams chose to write the custom services by themselves.

SYSTEM OVERVIEW

 As stated before, the system contains a JAUS Library that  is an implementation of the standard 
that allows sending and reception of JAUS messages and a JAUS telemetry visualization system 
to monitor and control the unmanned system. The library is used by every subsystem that needs 
to communicate with other JAUS based subsystem such as the telemetry visualization system or 
an unmanned system.

 

Figure 1. Dependencies overview.



 When the collaborative development of the system started, three major quality attributes were 
defined to build the system: maintainability, extensibility and reusability. The maintainability 
requirement is primary to all robotic clubs since there is a lot of staff turnover and due to the lack 
of time; the members generally produce poor documentation. Consequently, the code needed to 
be easy to understand and easy to modify. Then, the extensibility of the project is very important. 
Every team needs to be able to adapt the code and extend it  to better suit their needs. The 
adaptation to a different project  needs to be simple and easy or the system will not be used at all. 
Finally, it  is also very important for the system to be reusable; so that any unmanned system could 
use it without being limited by the framework.

 JAUS LIBRARY

 The first  aspect that  was tackled in the creation of the JAUS Library was how the subsystems, 
nodes and components would be represented. In some frameworks everything is a component 
with a specialization. Even though subsystems, nodes and components all contain services and 
handle messages, it  was decided to create them as independent  classes due to their different role 
in the system. Another aspect  was how these elements would be contained in the runtime 
environment. The JAUS architecture is very flexible on what consists of a separate process and 
what should run as a thread in a given application. It  was decided that  subsystems would run in 
their own process, every node would have their own process and components would run in 
separate threads under the node’s process. This allows the subsystem to be the single 
communication entry point of the vehicle and have many nodes working together towards the 
goal of controlling the vehicle. Any given unmanned system has a communication entry point, 
normally a computer, and then has one or many nodes that  could be spread around other 
computers or other types of electronic devices. In the case of SONIA, the subsystem and the main 
node, AUV6, both run on the main computer. The idea behind this separation of processes was to 
give us the possibility to transfer services on custom electronics board to take advantage of real 
time computation, which cannot be achieved on a regular computer.

Figure 2. Process architecture.



 The fact  that subsystems run in different processes than nodes caused us some real headaches.  
Subsystems were not  able to dynamically know about the different  nodes that reports to it. 
Moreover, communication between subsystems and nodes became more complicated. In order to 
solve these issues nodes open a UDP Socket. To make sure the subsystem would still be able to 
communicate on the default  JAUS port, each node opens its socket  on a random port, preventing 
any port  conflicts. This solution did not  solve the dynamic discovery issue since the subsystem is 
not aware of the destination port  of its nodes. In order to answer this problem,  every node knows 
the IP address of their parent subsystem and sends out  a Report  Heartbeat message on the default 
JAUS port(1, figure 3). Once this message is received by the subsystem, the node is added to the 
subsystem routing table (2, figure 3). The subsystem is then able to periodically poll the nodes to 
make sure that they are still up and running (3, figure 3).

Figure 3. Node subscription process.

 Every JAUS element  offers services. These services are represented by classes each 
implementing their own state machine. Contrary to every other service, the transport service was 
coded differently. Since it  is the base of every message handler, it was directly integrated in the 
components, nodes and subsystems. The message routing mechanism was split into two separate 
sections. At first, the message enters the element  directly. If it is destined for itself it  is directed to 
the service manager. If the message is for another element, it  is routed to the right one either 
through a socket, or directly to the component in the case of a node. That  way, it  is easier to 
manage the flow and the order in which the messages had to go through the services. The 
transport service is effectively treating a message last  when sending but  has to be the first  to treat 
a message when receiving. As for the other services, the message trickles down from the top most 
service then through the list of dependencies. To achieve this, a chain of command was 
implemented in the service manager. Every message goes through the chain of command until a 
service handles the message. To ensure consistency, every time a service is added to the service 
manager all its dependencies are added after it  in the chain of command. This way the user of the 
JAUS framework does not need to know about the dependencies and eases the learning curve.

 The framework offers a vast  array of delegates to allow an easy integration in every control 
systems projects. Every service offers one or more delegates to allow decoupling of the 
framework with the actual control system. The unmanned system implements the delegates and 
registers them to the framework allowing every aspect of the control system to be monitored and 
controlled by the telemetry visualization system or any other JAUS system. Adding this 
delegation made sure that every team could use different  architecture and simply have to bind to 



the JAUS library framework. This was a key feature for widespread acceptance of the framework 
by all the teams composing OctETS.

 JAUS TELEMETRY VISUALIZATION SYSTEM

 The JAUS telemetry visualization system provides a generic framework for the teams to easily 
develop widgets to monitor and control their vehicle. As stated before, the telemetry visualization 
system is using the library to communicate with any number of unmanned systems.

 The telemetry visualization system is composed of a node and a component that  establish 
communication with the unmanned systems. In order to facilitate debugging of the control 
system, the telemetry visualization system was implemented as a node. Doing so allows the 
control system and the telemetry visualization system to run on the same computer and avoid port 
conflicts. Moreover, when the user open a new widget, a new component  is created for this 
widget, called a widget  communicator, with a custom widget service. The widget  service receives 
messages from the component  and then, passes it  to a list of message handlers. Normally, each 
widget  has a message handler whose responsibility is to retrieve the information from the 
message and set it to the graphical components of the widget. There is also a generic message 
handler for all widgets to handle the core messages such as event control.

 Every widget has its own specific widget communicator that manages the subscriptions of the 
widget. A subscription holds the address, the query message and the event type. Since a widget  is 
directly bound to a JAUS component, it  can easily send messages through the normal JAUS 
message flow. This allows widgets to effectively control behaviors of the unmanned system.

 Some widgets are available in the common telemetry visualization system but these are very 
generic. They are mostly used to debug the telemetry visualization system. There is a console 
widget  displaying telemetric debug information. A widget  that shows a tree of all the components 
of the system. Another widget to forge JAUS message to send to any component, mainly used for 
debugging purposes. A generic alarm widget  displaying alerts to the operator. Another widget 
displaying every value handled by JAUS. Each value is displayed in a table. This table is very 
useful when someone wants to monitor a specific value and no widget displays it.

 To configure the telemetry visualization system to their own needs users choose which 
widgets they want  to use and where they want  them positioned on the interface. To save time, the 
operator can save their perspective, a set  of widgets, and then the application will load it 
automatically at program start up.

 A major requirement for the JAUS telemetry visualization system is flexibility of the system. 
The software application must be usable for any type of unmanned system that supports JAUS. 
Also, the common project  had to be as generic as possible because submarine specific widgets 
should not  mix with ground vehicle widgets due to maintainability issues. All the platform 
specific code is managed by each team. When a JAUS telemetry visualization system is 
instantiated, it  is possible to specify every widget to load by using Java’s reflection features. This 
way, the generic telemetry visualization system is not coupled with any specific code.

 To ease the development  and debugging of the telemetry visualization system a mock JAUS 
system was developed, this system also uses the JAUS library. This software is used to simulate 
values and confirm that the telemetry visualization system displays these values properly. 



Developing the telemetry visualization system with the real control system would have been very 
complicated. First, the real control system is always under development. It  is also bound directly 
to the hardware. The mock system helped development  and made integration with the real control 
system seamless.

SONIA INTEGRATION

 For the 2011 competition, the SONIA team decided to code a new control system. The team 
needed to rewrite all the tools used to control the submarine because they were all directly 
coupled with the control system. As soon as the JAUS library was functional, the integration with 
the SONIA control system started.

Figure 4. SONIA dependencies overview.

SONIA JAUS Library

 Every SONIA specific service and message implementation is gathered in the SONIA specific 
JAUS library. This extends the common library to add new features, specific to SONIA. 
Operators want  to monitor all the sensors’ data. All this information needs to be sent to the 
telemetry visualization system. They also want  to control all the actuators. To do so, every sensor 
and actuator have their own service that handles its own data. For example, there is a service for 
the doppler velocity log, the inertial measurement  unit, the power management board, the torpedo 
launcher and several others. 

 For the SONIA project it was necessary to override some features from the JAUS library such 
as the control management. For the needs of the team, management service added too much 
complexity. Every widget needed to ask for control before setting a value. It was mainly 
problematic when two widgets could modify the same value but only one has the right  to do so. 
The control management was disabled and was not used in the current implementation.



 Also, the Local Waypoint  Driver service was modified in the SONIA implementation. First of 
all, a more reusable waypoint tolerance with different  values for x, y, z and heading. Moreover, 
the team disabled the travel speed record because it is not used. 

SONIA JAUS Telemetry

 The SONIA JAUS telemetry project  gathers all the SONIA widgets and injects them in the 
common telemetry visualization system. Example widgets include a mission editor, an attitude 
and depth indicator, a control for all the submarine’s actuators, output  of the mission logs, 
waypoint  control and  indicators for many of the submarine’s important  values. There is also a 
joystick widget to easily control the submarine in pool tests or demonstrations.

Figure 5. SONIA JAUS Telemetry.

 Of course our implementation of the telemetry visualization system still requires some work. 
For example, when two operators are using the telemetry visualization system to test the 
submarine some problem can occur. First of all, several telemetries can be used at the same time 
to control the same control system. When two operators connect to the control system with the 
same JAUS address, all the event registrations break. Another problem is when a telemetry 
visualization system is terminated without  unregistering their events; the server will continue 
sending messages. To fix the latter, the  liveness service could be used as a keep alive mechanism 
for the communications.

AUV6 Interface

 A full integration of the JAUS architecture in our control system meant that internal 
communication would have to be done by messages. Past  experience showed that this type of 
communication is hard to debug since it  is not always possible to track down the origin of 



messages. Team SONIA decided to only use the JAUS framework to handle communication 
between the telemetry visualization system and the control system. The control system was 
designed around a linear control loop paradigm. Every part of the system is linked to a JAUS 
service via one or more delegates. Allowing monitoring and control of the entire system with 
minimal modification to the design of the older control system. This way, the control system had 
complete access to all the information without having to go through the mechanism of requesting 
control from JAUS. Since SONIA is an autonomous vehicle, it  needs to be able to control itself 
without  any external communication. In other words, the control system constantly needs to have 
full rights over all the sensors and actuators available.

RESULT

 Overall, the project  was a success. Every ETS robotics team was able to use the same baseline 
for their vehicle telemetry visualization system and also to support  interoperability between their 
unmanned systems. Consequently, the reusability requirement was achieved. The chosen 
architecture worked well as it presented no conflict  between the teams and the code base was not 
too complicated to manage for the developers. Moreover, with the service delegates, it  is easy to 
integrate the library to an existing control system. It only needs to instantiate the JAUS 
architecture and provide the data. With this implementation, it  is also easy for a team to add new 
components to the system.

 As for the telemetry visualization system, the widget modularity gives great  results as the 
teams can easily exchange widgets. Also, the modularity simplified the learning curve for new 
widgets developers as they do not need to know the entire system to add functionality to the 
software. Finally, the usability of the system is good; the operators were able to efficiently 
maneuver the different types of vehicle. It  has been used to control and monitor a submarine since 
the end of January without  major problems and the team should be able to keep this solution for 
the years to come. 

FUTURE WORK

 Every time the mission switch is set to on, the SONIA control system saves the camera 
streams, sensor values and mission logs. This data is then synchronized and replayed using a tool 
called the log replay. This is used to debug the tasks accomplished by the submarine after a 
mission. By using JAUS as a communication abstraction it  would enable the telemetry 
visualization system to be used as a graphical user interface for the log replay. Some widgets and 
services would be added to be able to control the logs and to stream the cameras. This log replay 
telemetry would connect to a mock AUV control system, reading its data from files instead of 
directly from sensors. To simplify the implementation, JPEG compression would be used on 
every image to be able to send a complete image per UDP packet.

 During the integration of JAUS with the SONIA control system, a lot of boilerplate code has 
been written in order to send the vehicle information to the telemetry visualization system. This 
code includes the creation of new custom services, messages and records. This took some 
valuable time from team members to write and test this code. To reduce the cost of creating new 
services, a code generation tool could be implemented to automate this task. This tool could have 
a graphical user interface to make it usable by anyone on the team.



CONCLUSION

 In conclusion, this paper demonstrated that the integration of the JAUS architecture in 
multiple robotics projects with very different  purposes is possible. The choice of going with an 
established protocol saved the teams a lot  of development time and allowed the framework to be 
available for everyone to use and integrated before their various competitions. The creation of the 
framework helped to integrate the protocol in every team’s project, by offering an interface easy 
to use. The different  delegates rendered the integration to various architectures very easy. This 
allowed every team to work on different  architectures depending on personal preferences and 
competition requirements. Also, the telemetry visualization system offers a very extensible 
interface to add different widgets depending on the different  projects. Finally, the most important 
reason OctETS was founded upon, sharing of a common library, was a success. Every 
autonomous robotics teams at ETS are now using JAUS and the JAUS telemetry visualization 
system with their own custom widgets. Furthermore, if new robotics teams were to emerge at 
ETS, they would have a solid and tested base software suite to build upon. This would allow them 
to concentrate on their own control systems and not  have to worry about monitoring the robot 
itself.

ACKNOWLEDGEMENTS

 First of all, we would like to recognize the generous support  of the École de Technologie 
Supérieure and all our sponsors, without them we could not achieve so much and push the limits 
of our submarine. Also, we would like to thank Kevin Larose, Olivier Allaire, Pier-Luc Caron St-
Pierre, Marc-André Courtois, Eric Arseneau and the SONIA AUV team that  helped us with our 
projects and the writing of this paper. Finally, thanks to Frédéric Morin, Guillaume Dorion 
Racine, Jérome Gagnon and Michael Mimault from Dronolab for their contribution to the project.

REFERENCES

• JAUS Tool Set http://www.jaustoolset.org/

• Open JAUS http://www.openjaus.com/

• JAUS++ http://active-ist.sourceforge.net/

• AS5684 JAUS Service Interface Definition Language http://standards.sae.org/as5684a

• AS5669 JAUS / SDP Transport Specification http://standards.sae.org/as5669a

• AS5710 JAUS Core Service Set http://standards.sae.org/as5710

• AS6009 JAUS Mobility Service Set http://standards.sae.org/as6009

http://www.jaustoolset.org/
http://www.jaustoolset.org/
http://www.openjaus.com/
http://www.openjaus.com/
http://active-ist.sourceforge.net/
http://active-ist.sourceforge.net/
http://standards.sae.org/as5684a
http://standards.sae.org/as5684a
http://standards.sae.org/as5669a
http://standards.sae.org/as5669a
http://standards.sae.org/as5710
http://standards.sae.org/as5710
http://standards.sae.org/as6009
http://standards.sae.org/as6009

